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A General Harmonic Rule Controller for Run-to-Run
Process Control

Fangyi He, Kaibo Wang, and Wei Jiang

Abstract—The existence of initial bias in parameter estimation is
an important issue in controlling short-run processes in semicon-
ductor manufacturing. Harmonic rule has been widely used in ma-
chine setup adjustment problems. This paper generalizes the har-
monic rule to a new controller called general harmonic rule (GHR)
controller in run-to-run process control. The stability and opti-
mality of the GHR controller is discussed for a wide range of sto-
chastic disturbances. A numerical study is performed to compare
the sensitivity of the GHR controller, the exponentially weighted
moving average (EWMA) controller and the variable EWMA con-
troller. It is shown that the GHR controller is more robust than
the EWMA controller when the process parameters are estimated
with uncertainty.

Index Terms—Automatic process control, EWMA, robust con-
trol, worst case.

1. INTRODUCTION

ANY semiconductor manufacturing processes are
M suffering from sudden component failures, initial setup
bias, gradual wear of components or aging effects. To produce
conforming products, feedback controllers are needed for such
process to generate control actions and maintain output on
target.
The following model has been used extensively in the liter-
ature to represent diverse semiconductor processes (see, e.g.,
Tsung et al. [23], Tsung and Apley [22], Apley and Kim [1]):

Yi=a+ B 21+ Ny, (D

where z;_1 denotes the process input recipe at the end of run
t — 1 (beginning of run ¢) and N;, which may not be white
noise (WN), denotes the process disturbance that accounts for
the variability in the process. The parameter « is called the
offset or intercept and the parameter (3 is called the process gain
or slope. It should be noted that the disturbance /N, models
different types of process faults illustrated above. Initial bias,
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sudden process shifts and gradual process drift can all be ex-
pressed by this model.

An IMA(1,1) model is a commonly used structure in semi-
conductor process control (Box et al. [2], Box and Kramer [4],
Janakiram and Keats [12], Montgomery et al. [14], Tsung et al.
[23], Tsung and Apley [22], Vander Wiel et al. [26], Vander Wiel
[25], Del Castillo and Hurwitz [7], Box and Luceiio [3], Lucefio
[13], Chen and Guo [5], Apley and Kim [1]). An IMA(1,1)
disturbance model can characterize the behavior of a non-sta-
tionary process, which is

Ny =Ni_1+e—0eiq, 0<bO<1 2)

where ¢; is an independently identically distributed (i.i.d.)
sequence of random noise with mean O and variance crg, ie.,
{e:} ~ WN(0, 62). § is the IMA parameter. In order to verify
whether a noise sequence follows an IMA(1,1) model, one
may take one-step lagged difference of the sequence, and fit an
MA(1) model to the differences.

Among others, the exponentially weighted moving average
(EWMA) controller has been widely used to compensate
process deviations or faults. To adjust process output, Y341, to

its target value 7, the EWMA controller suggests

T—Q

B

Ty =

Sachs et al. [24] assume that an estimate b of the process gain
(3 is available prior to the beginning of the control session. How-
ever, to account for the process disturbance [V, the intercept o
is estimated recursively using an EWMA equation. In this con-
troller, the estimate of « at run ¢ is denoted by a;. This estimate
is then updated using the following EWMA equation,

ar =w(Yy —bxi_1) + (1 — w)az_1,

where w is a parameter (0 < w < 1) that gives more weight to
the most recently observed forecast error of the quality charac-
teristic the closer it is to 1. The control law follows

o T — Q¢
Te=

If the process gain is estimated accurately, i.e., b = (3, and
the process output at time O is on target, i.e., & + Bxg = T,
the EWMA controller is the minimum MSE (MMSE) controller
when the EWMA parameter w is set equal to 1 — 6 (Box ef al.
[2], Sachs et al. [24]).
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However, two critical constrains are confronting the semicon-
ductor manufacturing practice. First, estimates of process pa-
rameter are never accurate; parameter estimation uncertainties
always exist. Therefore, controllers have to be robust to inaccu-
rate parameter values and guarantee process stability and control
performance in all circumstances. Second, short-run processes
leave narrow space for process adjustment and call for quick ac-
tions to improve transient performance. As a result, when initial
setup bias or fault exists, controllers that respond slowly to such
shifts or faults are not capable in new manufacturing scenarios.

Patel and Jenkins [16] presented a scheme to change the
EWMA weight adaptively to compensate step and drift dis-
turbances. Chen et al. [6] demonstrated that an ARI(3,1)
model is more suitable for the metal sputter deposition process
under investigation. To handle this special type of disturbance,
the authors developed an extended Kalman filter controller.
Wu et al. [28] investigated the effect of metrology delay on
control performance. The authors also suggested alternatives
to compensate the adverse effect caused by metrology delay
when the underlying process exhibits nonstationary or highly
autoregressive disturbance. Nonetheless, none of these works
focuses on compensation of initial bias and short-run processes.

Short-run processes are becoming more and more prevalent
due to high-degree customization, frequent process mainte-
nance and the mix-product trend in semiconductor manufac-
turing (see, e.g., Sullo and Vandeven [18], Pan [15], Tsiamyrtzis
and Hawkins [21]). For example, in a wafer preparing process,
all facilities have to be adjusted everyday or even several times
per day to meet technical specifications of different orders.
An etching process has to be re-configured frequently when a
new batch of wafers with varying critical dimensions arrives.
In recent years, production lines designed with fast-switch
capability are frequently seen. When processes are run with
small batches, the short-term performance of a controller will
become a critical concern.

However, the EWMA controller’s short-term performance
may be deteriorated due to the following reasons. First, the
process may have large initial setup bias, i.e., |a+SBxg—7| > 0;
Second, the effect of inaccurately estimated process gain pa-
rameter, i.e., b # (3, is extrusive during the initial stage; Third,
the disturbance sequence may be wrongly identified. When
N, is not an IMA(1,1) process, and even when N; follows an
IMA(1,1) process but the EWMA parameter w is not set to
1 — 60 because of inaccurate estimate of ¢, the performance of
the EWMA controller becomes unpredictable.

Tseng et al. [20] proposed a variable EWMA (VEWMA) con-
troller, which allows w to vary at each step. That is, a; is updated
as follows:

ar = w(Yy —bxi_1) + (1 — wi)az—1

where w; = wg+6%, § is a discount factor. The authors show that
the VEWMA can compensate initial bias faster than the EWMA
controller. However, in order to setup the optimal VEWMA con-
troller, the amount of initial bias has to be known in advanced.
The performance of the VEWMA controller may deteriorate if
this parameter is not estimated accurately.

In this paper, we propose a new control scheme called the
general harmonic rule (GHR) controller which has higher
robustness when parameter estimation uncertainties exist and
better short-term performance than EWMA controller when the
process output has a large initial bias. We show that the GHR
controller is optimal when NV, is white noise and b = (. In
comparison with the EWMA controller’s optimality, the GHR
controller’s optimality is derived without any assumption on
the process initial condition, i.e., the initial bias is taken as an
unknown value instead of 0. We also investigate the sensitivity
of both GHR and EWMA controllers and show that the GHR
controller is more robust than the EWMA controller, especially
when 6 is overestimated. The sensitivity analysis also extends
to imperfect estimate of the process gain £, i.e., when 3 is
overestimated offline (|| > |4| and b - 3 > 0), the GHR
controller has much better performance than that of EWMA
controller. This result is very significant since in practice people
tend to use an overestimated (3 rather than an underestimated
one in the EWMA controller due to its stability condition, i.e.,
0 < wB/b < 2 (Ingolfsson and Sachs [11], Sachs et al. [24]).
The stability condition guarantees the control system away
from bursting if  is not underestimated too much.

The rest of this paper is organized as follows. Section II
presents the motivation and problem descriptions. Section III
discusses the stability and optimality of the GHR controller.
Section IV provides a sensitivity analysis of both GHR con-
troller and EWMA controller. A numerical example is presented
in Sections V and VI concludes the paper.

II. THE GHR CONTROLLER

The setup adjustment problem was first studied by Grubbs
[9]. Suppose the measurements Y; represent some quality char-
acteristic of the items as they are produced at discrete points in
timet = 1, 2, .. .. Grubbs [9] proposed a method for the adjust-
ment of the machine in order to bring the process back to target
if at start-up it was off-target by d units, where d is an unknown
value. In this section, we will consider the process model (1)
used in run-to-run control. Since both « and /3 are unknown and
need to be estimated from the offline procedure, the initial bias
of the process output is an unknown value. Using the similar
derivation of Grubbs’, we shall in the following derive the op-
timal controller based on unknown initial bias.

Assume that the disturbance /V; in model (1) follows a family
of processes which could be represented by

Ny =€t +res—1 + Pagpo + - 3)

where e, ~ WN(0,02) fort > 0and e, = 0 forall j < 0.1t
includes many popular random processes. For example, /V; is a
white noise if 1); = 0 for j > 1, an IMA(1,1) with parameter
#ifp; =1 — 0 for j > 1, an ARMAC(I,1) with parameters (¢,
0)if; = ¢7~1(¢p — 0) for j > 1, and an ARIMA(1,1,1) with
parameters (¢, 0) if 1, = 1+ ¢ — 0/1 — ¢p(1 — ¢7) for j > 1.

Atany time ¢, denote the process mean conditional on the past
outputs as /iy, i.e., 1y = B(Y;| Y™"), where Y,/ ™! stands for the
observations {Y;_1,Y;_o,...,Y1}. Set Ylt_1 to @ whent < 1.
Let d represent the deviation of i from the target value 7. We
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call d the initial bias since it comes from the inaccurate estimate
of the process parameters at time 0. d can be represented as

d=p —7=(a+Pzy)—T 4)

where 29 = (7 — ag)/b. Then the true value for the first output
is Y1 = 7 + d + £1. Note that 7 is known and Y7 is observable,
so we can measure Y; — 7 directly. However, d is unknown
and cannot be determined since o and (8 are unkown. In the
following derivation, without loss of generality, assume 7 = 0
so that Y; represents the output’s deviation from target at time ¢.

After producing the first item and observing the first devia-
tion Y7, we can adjust the last period’s input zg by k1Y7 before
making the second item. That is,

T :l‘o—k‘lyl :J}O_kl(d-‘r&"l). (5)

From (1), (3), (4) and (5), we know that, after the first adjust-
ment,

Y, = (1 — ﬂkl)d-l- (1 — ﬂkl)él
+(1h1 — 1) e1 + e2.

It follows that H2 = (1 — ﬂkl) d + (1 — ,8k1) €1+ (1/)1 — 1) €1.
Similarly, an adjustment can be made on the last period’s input,
ie.,

To =21 — k2Y>
and

s = (1= Bk1)(1 — Bka)d
+ [(1 = Bky)(1 = Bk2) + (1 — Bka) (1 — 1)
+ (2 — p1)]er + [(1 = Bka) + (1 — )] e2. (6)

Continuing this iteration, by making the corrections k3Y3,
k4Yy, ..., etc., in general, the process mean at time ¢ condi-
tional on the past observable deviations follows:

t—1

t—1 t—1
ut:dH(l—ﬂk’i)-i-Zgi H(l_ﬂkj)
i=1 i=1 Jj=i

t t—1
+ Z H(l = Bkj)(br—i —r—i-1)| (D)

r=i+1j=r

where we specify that 1o = 1 and H;; (1—-pkj) = 1. Our aim
is to determine the adjustment coefficients k; (i = 1,2,...,t —
1), which solve the following optimization problem:

min MSE(14)

k;,i=1,2 t—1
E(p) = 0. @®)

is s &yl

s.t.

Theorem 1 gives a recursive form to determine k;—1 given
ki_o,ki_3, ..., k1 for any time ¢.
Theorem 1: If k1, ko, ..., ki1 solve the problem (8), then

ko | = 114+ @=1)-th1 =1 — My_s(k1, ko, ... ky—2)
g t—1—M;_o(ki,ka,... ki—2)
©)
where
Mf_Q(k'l,kQ ..... kf_g)
t—3 t—1 t—2
=>" > TI = BE)Wrmi = $rmic1)
=1 r=i+42 j=r
t—2 t—2
+ry o [ (10— B8 (10)
i=1 j=i+1

=(1 = Bki—2) - My_3(k1,ka, ... ki—3) +ts_2. (11)
The proof of Theorem 1 can be found in Appendix A. Note that
it is obvious from (10) that My = 0. Theorem 1 gives us a
way to obtain the adjustment k; at any time ¢ based on all the
adjustments before time ¢.

According to Theorem 1, we can design a new controller as
follows. Suppose the process to be controlled can be modeled
as (1) with the disturbance (3), the new control rule is

Ty = Xp_1 — ke Yy (12)
where
R
and
My=(1—-0bkt)  My_1 + 9. (14)
Attime 0, zg = —ao/b and My = 0, where a¢ and b are the of-

fline estimates of the process parameters « and (3, respectively.
It can be seen from (13) that when all ¢»; = 0(j > 1) and
b = 1, k; reduces to 1/t, which is exactly the harmonic rule
in the process setup adjustment problem derived by Grubbs [9].
We call the new controller General Harmonic Rule (GHR) con-
troller and +); (j > 1) are called the GHR parameters. In partic-
ular, for the IMA(1,1) disturbance with parameter 6, ¢; = 1—0
for all 7 > 1.

III. STABILITY AND OPTIMALITY

For any control scheme to be practical, a fundamental re-
quirement is that the process should achieve long-term stability.
Although this paper focuses on the performance of short-run
manufacturing processes, it is worthwhile to investigate stability
conditions for the GHR controller. A process {Y;} is said to be
asymptotically stable if

lim E(Y;) =7 and

t—o0

Jim Var(Y;) < oco.  (15)
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The stability of a process ensures that the mean of the process
output converges to the desired target, while its asymptotic vari-
ance remains bounded. The following theorem gives the sta-
bility condition for the GHR controller when the disturbance
follows IMA(1,1) process.

Theorem 2: The GHR controller defined in (12)—(14) is
asymptotically stable if 0 < 3/b < 2 when the disturbance N;
is an IMA(1,1) process.

The proof of Theorem 2 can be found in Appendix B. This
condition implies that if b is of the same sign and larger (in
absolute value) than [, then stability is guaranteed. If b is of
the same sign and smaller (in absolute value) than (3, it must
be larger (in absolute value) than 3/2 for stability. If b and 3
have different signs, the process will always be unstable. The
following theorem gives the conditions under which the GHR
controller is optimal.

Theorem 3: If b = 3 and IV, is white noise, i.e., ; = 0 for
all 5 > 1, the GHR controller is optimal.

The proof of Theorem 3 can be found in Appendix C. Our
proof is very similar to that of Grubbs [9], but from a controller’s
aspect. In comparison with the EWMA controller’s optimality,
the GHR controller is derived from no assumption of ag. That
is, if the process disturbance is white noise and b = 3, the GHR
controller is the optimal controller no matter what the process
initial status is.

IV. SENSITIVITY ANALYSIS

In this section, we take the Deep Reactive Ion Etching (DRIE)
process in semiconductor manufacturing as an example to study
the performance of the newly proposed GHR controller. The
DRIE process is an important step for forming desired patterns
on wafers in micro/nano-scale fabrication; it involves complex
chemical-mechanical reactions. Wafers to be etched are loaded
into a chamber. The system first releases etching plasma into the
chamber to generate trenches subject to designed mask patterns;
then in the deposition step, different gases are introduced into
the chamber to generate a protective film on the sidewalls. The
etching and deposition steps repeat alternately until the preset
processing time is reached or the end-point detection module
confirms the correct etching depth. A more detailed illustration
of the etching process is referred to Wang and Tsung [27]. DRIE
has been successfully used in producing photonic crystals, mag-
netic nanostructures and MEMS resonators (STS [17]).

One of the key quality characteristics produced by the DRIE
process is the etched profile. As is shown in Fig. 1. An ideal
profile should be vertical, having an angle of 90° against the
horizontal line (7 = 90). The etch/deposition time ratio is usu-
ally adjusted to compensate over-etched or under-etched wafers
to generate vertical sidewalls. In an analysis presented by Wang
and Tsung [27], the authors studied the DRIE process and sug-
gested that the slope of the produced profiles can be modeled
by:

}/t = 917 — 1.811715_1 + Nt?

where NV, is an IMA(1,1) time series with § = 0.6. The param-
eters are estimated from a designed experiment.

Fig. 1. Illustration of an etched profile.

As each production run is very time-consuming and it is not
practical to study the performance of the proposed controller
by adjusting the real process, we treat the above Equation as
the true process model and study the performance of the GHR
controller. The EWMA and VEWMA controllers are also set up
for the same simulated process for comparison. Our comparison
is divided into the following two parts, when (3 is known and
unknown.

A. [ is Known

In many setup adjustment literature, the process gain 3 is usu-
ally assumed known and set to 1 (Grubbs [9], Triestsch [19]
and Del Castillo et al. [8]). In this section, we first assume [
is known or could be accurately estimated offline, i.e., b = 3,
and investigate the performance of both GHR and EWMA con-
trollers given different offline estimate of « (i.e., ag). We will
first assume the disturbance follows an IMA model and then
takes a more general ARIMA(1,1,1) model.

1) Nyisan IMA(1,1) Process: The IMA(1,1)model has been
widely adopted to characterize disturbances in diverse applica-
tions. The conventional EWMA controller has been proved to
be optimal to compensate such a disturbance series (Box et al.
[2]). However, certain conditions must be satisfied in order for
the EWMA controller to achieve its optimal performance. First,
the process parameters o and 3 are both known or accurately
estimated offline, i.e., ap = o« and b = (3; Second, the EWMA
parameter w should be set to 1 — # which implies that the IMA
parameter 6 should be known or accurately estimated offline.
In short-run production scenarios, however, it is often impos-
sible to obtain accurate estimate of these parameters. In the fol-
lowing simulations, we take « = 91.7, 6 = —1.8, 0 = 0.6
and 02 = 1 as the true parameters of the DRIE process. The
EWMA, VEWMA and GHR controllers are then set up to ad-
just the process under different hypothetical settings.

Three cases are studied in the following. In case 1, we assume
6 is accurately estimated (i.e., H = f); in case 2, we assume 6 is
overestimated (i.e., > #); and in case 3, we assume f is under-
estimated (i.e., 0 < #). In each case, the EWMA parameter w
and the GHR parameters ¢; (j > 1) are all set to 1 — 6. For the
VEWMA controller, the initial value of the smoothing param-
eter, wo, is set to 1 — 6. The choice of the discount factor in the
VEWMA controller depends on the initial process bias, which
is unknown in real scenarios. Therefore, we choose a moderate
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Fig. 2. N, is IMA(1,1) process and 6 is known (8 = 0.6).
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Fig. 3. AMSE of the EWMA and GHR Controllers when 6 is Over- and Under-estimated.

TABLE I TABLE Il
THE AMSE WHEN N, Is IMA(1,1) THE AMSE WHEN N; Is IMA(1,1)
6=0.6 =06 =06 6 =07
ag 87.7 | 89.7 | 91.7 | 93.7 | 95.7 ag 87.7 | 89.7 | 91.7 | 93.7 | 95.7
The GHR Controller 1.205 | 1.055 | 1.005 | 1.056 | 1.206 The GHR Controller 1.222 | 1.072 | 1.023 | 1.073 | 1.223

The EWMA Controller | 1.311 | 1.077 | 0.999 | 1.077 | 1.312 ~ The EWMA Controller | 1.410 | 1.116 | 1.018 | 1.116 | 1.410
The VEWMA. Controller | 1.206 | 1.054 | 1.004 | 1.055 | 1.207 The VEWMA Controller | 1.230 | 1.072 | 1.020 | 1.073 | 1.231

All the SEAMSE’s are smaller than 0.002 All the SEAMSE’s are smaller than 0.002
TABLE III
. . . . . . THE AMSE WHEN N, Is IMA(1,1)
value, 6 = 0.5, in the following simulations. The estimated in-
tercept, ag, is varying within a neighborhood of . =06 #=05
We did 10 000 simulations for each case. In each simulation, ag 87.7 | 80.7 | 91.7 | 93.7 | 95.7

we run 80 steps for Y;. The MSE of Y7, Y5, . . ., Yy is computed.
The Average MSE (AMSE) of the 10 000 simulations is reported
in Tables I-III. The simulation results are graphically shown
in Figs. 2 and 3(a) and 3(b). The standard error in the AMSE

The GHR Controller 1.218 | 1.068 | 1.018 | 1.069 | 1.219
The EWMA Controller | 1.279 | 1.079 | 1.012 | 1.079 | 1.279
The VEWMA Controller | 1.219 | 1.069 | 1.019 | 1.070 | 1.220

(SEAMSE) is reported as well, which is defined as All the SEAMSE’s are smaller than 0.002
SEAMSE — SDMSE where SDMSE means the standard deviation of mean square
~ /No. of replicates errors, and the number of replicates used in the simulation is
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10000. Essentially, SEAMSE measures the significance of the
difference of AMSE values among all controllers.

Both Table I and Fig. 2 show the results when 6 = 0.1tis seen
that although the EWMA controller is an MMSE controller when
ag = «, which achieves the lowest MSE, the GHR controller is
more robust than the EWMA controller when a is deviated from
a. The VEWMA controller performs in between; it is superior to
the GHR controller when ay is close to «, while is inferior to the
GHR controller when a deviates far away from «. The AMSE
of the GHR controller increases much slower than the EWMA
controller does when ag deviates from its true value c.

Similar patterns are observed when 6 is either overestimated
or underestimated. When 6 is overestimated, as = 0.7 in case
2, Fig. 3(a) and Table II show that the AMSE of Y; using the
GHR controller is almost consistently smaller than that using
the EWMA controller for any aq values and the margin could
be as big as 13.3% when a9 # «. The VEMWA controller
shows its capability in compensating initial bias, as Tseng et
al. [20] demonstrated. When 6 is over estimated, the VEWMA
controller is slightly better than the GHR controller or equally
good when ay is close to «, while it becomes less favored when
the difference between ag and o becomes large.

This result has very important implications in practice. As
Hunter [10] suggested, the EWMA parameter w is usually set to
avalue between 0.1 and 0.3. This fact implies that fis ordinarily
assumed to be between 0.7 and 0.9, although 6 could be smaller
than 0.7 in many cases. When 6 is overestimated using the rule
of thumb, the advantage of the GHR controller over the EWMA
controller becomes more significant.

Table IIT and Fig. 3(b) show the results when 6 is underesti-
mated (§ = 0.5). Again, the robustness of the GHR controller
is proved by its slow increasing trend when ag deviates from
a. Now, the VEWMA controller is slightly inferior to the GHR
controller for all tested aq values.

2) N;isan ARIMA(1,1,1) Process: Even though the process
we investigate has an IMA(1,1) distrubance series, it is mean-
ingful to study the performance of the GHR controller under
other types of disturbance series. In the following simula-
tion, we assume that the disturbance N; follows an general
ARIMA(1,1,1) process with parameters ¢ and 0~, while it
is misidentified as IMA(1,1) process with parameter . Ap-
pendix D shows that the estimate of IMA parameter § would
be around |¢ — 0]/+/1 — ¢2. We consider two cases in the fol-
lowing simulations. In case 1, ¢ is set to 0.2 and 0 is set to 0.6;In
case 2, ¢ is set to 0.6 and 6 is set to 0.2. If these ARIMA(I,],I)
processes are misidentified as IMA(1,1) processes, 6 is around
0.4 in case 1 and around 0.5 in case 2. Similar to the above
experiment, we replicated 10,000 simulations for each case.
In each simulation, we run 80 steps for Y; and computed the
AMSE of the 10,000 simulations as shown in Tables IV and V.

Fig. 4 further plots the AMSE versus ag for case 1 and case
2 respectively. Once again, the GHR controller has more robust
performance in both cases. The inaccurate offline estimate of «
has less impact on the GHR controller than on the EWMA con-
troller. The VEWMA controller and the GHR controller shows
similar performance. The VEWMA controller’s AMSE is gen-
erally larger when 6 is underestimated, while smaller when 6 is
overestimated.

TABLE IV
THE AMSE WHEN N, Is ARIMA(1,1,1)
6=0.6 $=02 6=04
ag 87.7 | 89.7 | 91.7 | 93.7 95.7
The GHR. Controller 1.210 | 1.060 | 1.010 | 1.061 1.211
The EWMA Controller | 1.245 | 1.067 | 1.008 | 1.067 1.246
The VEWMA Countroller | 1.214 | 1.063 | 1.012 | 1.063 1.215

All the SEAMSE’s for the GHR controller are smaller than 0.00002
All the SEAMSE’s for the EWMA and VEWMA controller are smaller than 0.002

TABLE V
THE AMSE WHEN N, Is ARIMA(1,1,1)
6=0.2 =06 6=05
ag 87.7 89.7 91.7 93.7 95.7
The GHR Controller 2.840 | 2.690 | 2.641 | 2.691 2.841
The EWMA Controller | 2.935 | 2.736 | 2.669 | 2.736 2.936
The VEWMA Controller | 2.831 | 2.681 | 2.631 | 2.682 2.832

All the SEAMSE'’s for the GHR controller are smaller than 0.00002
All the SEAMSE’s for the EWMA and VEWMA controller are smaller than 0.008

B. (3 is Unknown

In most run-to-run production processes, offline sample is
usually not large enough to guarantee accuracy of the parameter
estimates, especially the process gain 5. When [ is unknown
and has to be estimated by offline experiments, it is important
to investigate the performance of the GHR controller when all
parameters are estimated with uncertainties.

In the following study, the process is still assumed to fol-
lowing (1) with N; being an IMA(1,1) series. True process pa-
rameters are chosen as o = 91.7, 8 = —1.8, 8 = 0.6 and
ag = 1. Similar to the case when (3 is known, we analyze
three cases here: 6 is known, 6 is overestimated, and 6 is un-
derestimated. In each case, the EWMA parameter w and the
GHR parameters ¢; (j > 1) are all setto 1 — f. The discount
factor of the VEWMA controller is still set to 0.5. Estimated
parameters, a and b, are allowed to vary with their respective
neighborhood areas. The simulation results are reported in Ta-
bles VI-VIII. Fig. 5 shows the contour plots of AMSE for the
GHR and EWMA controller respectively when 6 is known. It is
easy to see that, for both controllers, the AMSE changes slowly
along the line b = 3/(a — 7) - (ap — 7) and achieves the min-
imum when a9 = « and b = 3. Comparing with the GHR con-
troller, the contour curve of the EWMA controller is more dense,
which indicates that the AMSE value increases more quickly
when b/(ag — 7) deviates from §/(« — 7) due to poor offline
estimates of « and (3. That is, the GHR controller is more robust
than the EWMA controller when offline parameter estimates
are not accurate, especially when |b| is bigger than |3|. The
VEWMA controller outperforms the GHR controller only when
the estimated values are close to their respective true values.
This tends to be an advantage of the GHR controller when
is overestimated in practice as we discussed before for the con-
troller’s stability.

Since using small values of w in the EWMA controller is a
rule of thumb in practice (Hunter [10]), Figs. 6 and 7 further
present contour plots of the AMSE for the three controllers
when 6 is overestimated and underestimated. Although all
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Fig. 4. AMSE of the EWMA and GHR Controllers when N, is an ARIMA(1,1,1) process but is misidentified as an IMA(1,1) process. (a) ARIMA with ¢ = 0.2
and € = 0.6. (b) ARIMA with ¢ = 0.6 and 8 = 0.2.

TABLE VI . TABLE VII )
THE AMSE WHEN 6 Is KNOWN (8 = 0.6) THE AMSE WHEN 6 IS OVERESTIMATED (6 = 0.7)
The GHR Controller The GHR Controller

b ap = 89.7 90.7 91.7 92.7 93.7 b ag = 89.7 90.7 91.7 92.7 93.7
2.1 1.057 1.023 1.009 1.013 1.036 -2.1 1.093 1.059 1.045 1.049 1.072
2.0 1.055 1.020 1.006 1.013 1.040 -2.0 1.085 1.050 1.036 1.043 1.070
-1.9 1.054 1.018 1.005 1.014 1.046 -1.9 1.078 1.042 1.029 1.038 1.070
-1.8 1.055 1.018 1.005 1.018 1.056 -1.8 1.072 1.035 1.023 1.035 1.073
1.7 1.058 1.019 1.008 1.025 1.070 -1.7 1.068 1.029 1.018 1.035 1.080
-1.6 1.064 1.022 1.013 1.035 1.089 -1.6 1.067 1.024 1.015 1.037 1.092
.15 1.074 1.028 1.020 1.050 1.117 -1.5 1.067 1.022 1.014 1.043 1.111

The EWMA Controller The EWMA Controller

b ap = 89.7 90.7 91.7 92.7 93.7 b ag = 89.7 90.7 91.7 92.7 93.7
2.1 1.089 1.031 1.006 1.013 1.052 -2.1 1.150 1.077 1.045 1.054 1.104
2.0 1.084 1.026 1.002 1.013 1.058 -2.0 1.138 1.065 1.035 1.048 1.105
-1.9 1.080 1.021 1.000 1.015 1.066 -1.9 1.126 1.053 1.026 1.045 1.109
-1.8 1.077 1.018 0.999 1.018 1.077 -1.8 1.116 1.042 1.018 1.043 1.116
1.7 1.076 1.017 1.000 1.025 1.092 -1.7 1.106 1.033 1.012 1.043 1.126
-1.6 1.077 1.017 1.003 1.035 1.111 -1.6 1.098 1.024 1.007 1.046 1.141
215 1.080 1.020 1.010 1.048 1.136 -1.5 1.091 1.017 1.004 1.052 1.161

The VEWMA Controller The VEWMA Controller

b ap = 89.7 90.7 91.7 92.7 93.7 -2.1 1.097 1.060 1.043 1.048 1.074
2.1 1.058 1.023 1.008 1.012 1.036 -2.0 1.088 1.050 1.035 1.042 1.071
2.0 1.055 1.020 1.005 1.012 1.040 -1.9 1.080 1.041 1.027 1.037 1.071
-1.9 1.054 1.017 1.004 1.013 1.046 -1.8 1.072 1.033 1.020 1.033 1.073
-1.8 1.054 1.017 1.004 1.017 1.055 -1.7 1.067 1.026 1.014 1.032 1.078
1.7 1.057 1.017 1.006 1.023 1.068 -1.6 1.062 1.020 1.011 1.033 1.087
-1.6 1.062 1.020  1.011  1.033 1.086 -1.5 1.060 1.016  1.009  1.037 1.102
-1.5 1.070 1.026 1.018 1.047 1.112 All the SEAMSE’s for the three controllers are smaller than 0.002

All the SEAMSE’s for the three controllers are smaller than 0.002

controllers’ performance are worse than that in Fig. 5, the controller for most tested cases when 6 is underestimated. The
EWMA controller’s performance deteriorates more signifi- GHR controller is seen to be the most robust against parameter
cantly; the VEWMA controller is also inferior to the GHR deviations, especially when |b] is greater than |3].
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TABLE VIII R
THE AMSE WHEN 6 IS UNDERESTIMATED (6 = 0.5)

The GHR Controller

b ap = 89.7 90.7 91.7 92.7 93.7
-2.1 1.053 1.019 1.005 1.009 1.032
-2.0 1.056 1.021 1.007 1.014 1.041
-1.9 1.061 1.025 1.012 1.021 1.053
-1.8 1.068 1.031 1.018 1.031 1.069
-1.7 1.078 1.039 1.028 1.045 1.090
-1.6 1.092 1.050 1.041 1.063 1.117
-1.5 1.111 1.066 1.058 1.087 1.155

The EWMA Controller

b ap = 89.7 90.7 91.7 92.7 93.7
-2.1 1.071 1.022 1.001 1.007 1.040
-2.0 1.072 1.023 1.003 1.012 1.050
-1.9 1.074 1.025 1.006 1.019 1.063
-1.8 1.079 1.029 1.012 1.029 1.079
-1.7 1.085 1.035 1.020 1.042 1.099
-1.6 1.095 1.044 1.032 1.059 1.125
-1.5 1.109 1.057 1.048 1.081 1.158

The VEWMA Controller
-2.1 1.053 1.020 1.005 1.009 1.032
-2.0 1.057 1.022 1.008 1.015 1.041
-1.9 1.062 1.026 1.013 1.022 1.054
-1.8 1.069 1.032 1.019 1.032 1.070
-1.7 1.080 1.040 1.029 1.046 1.091
-1.6 1.094 1.052 1.042 1.064 1.119
-1.5 1.113 1.068 1.060 1.089 1.156

All the SEAMSE’s for the three controllers are smaller than 0.002

V. AN ILLUSTRATIVE EXAMPLE WITH INITIAL BIAS

The above section has studied the performance and robust-
ness of the GHR controller. In this section, we use a specific
parameter setting and study the impact of initial estimation bias
on the newly proposed controller.

The process is again assumed to follow (1) and the distur-
bance NV, is an IMA(1,1) time series. The true parameter set-

The Offline Estimate of Alpha
(b) EWMA Controller

The Offline Estimate of Alpha
(c) VEWMA Controller

tings are « = 91.7, 8 = —1.8 and § = 0.6, while the estimated
values are assumed to be ag = 85, b = —3.0 and f = 0.8,
respectively. That is, initial bias exist in estimating all the pa-
rameters in the model. The target value 7 = 90.

Fig. 8 shows the process output Y; against time ¢ when the
three controllers are applied. The curves show that, the EWMA
controller requires a moderately large number of runs to bring
the process output to the target when the process has large ini-
tial bias (a+ 3(7 —ag)/b— 1 = 4.7). The VEWMA controller
is more efficient than the EWMA controller in removing initial
bias. However, the GHR controller is the fastest in bringing the
process output back to target. After the first 30 runs, the process
output Y; are almost the same using both controllers. Although
this is just a single realization of the control process, it demon-
strates the effectiveness of the GHR controller when the initial
bias is significant.

To better reveal the difference between the VEWMA and
GHR controllers, we further investigated the mean response of
a process with « = 91.7 and = —1.8. We consider different
cases when estimated « and (3, denoted by a( and b, are biased.
Fig. 9 shows the mean responses of a process controlled by the
VEWMA and GHR controllers under different initial bias. All
the cases have an equal initial bias d = 2. It is seen from (a) that
when only « is biased, GHR can bring the output back to target
immediately, while VEWMA consumes several more steps to
approach the target. When [ is also biased, in case (b), GHR
and VEWMA performs closely, while in case (¢), GHR outper-
forms VEWMA in compensating the initial bias.

To summarize, when the disturbance sequence follows an
IMA model and parameters are accurately estimated, the
EWMA controller is always suggested. This is supported by
both theory and simulation results. While when the distur-
bance model is not IMA or parameters cannot be estimated
accurately, either VEWMA or GHR is suggested. More specif-
ically, as the GHR controller is more robust in most cases,
GHR is more favored when initial bias or estimation uncer-
tainties is large.

VI. CONCLUSION

In short-run production processes, the performance of an
EWMA controller critically depends on offline estimates of
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process parameters. This paper proposes a new controller
based on the harmonic rule used in machine setup adjustment
problems. The sensitivity of the new controller is compared
with the EWMA and VEWMA controllers under different
scenarios of the disturbance parameter estimate, the process
offset and gains estimate, as well as the misidentification of the
disturbance. The short-run performance of the GHR controller
is shown better than that of the EWMA controller when the
offline estimates of the process or disturbance parameters are

inaccurate. Even though the VEWMA can compensate initial
bias faster than the EWMA controller, it is inferior to the GHR
controller when estimated parameter values deviate far from
their true settings, especially when 6 is underestimated. The
stability and optimality conditions are also derived for the new
controller. The sensitivity analysis indicates that the new GHR
controller is more robust than the EWMA controller under
model misspecification and parameter estimation uncertainties.

It should be noted that dislike the EWMA controller, which
is optimal for IMA(1,1) disturbance series only, the GHR con-
troller can be applied to processes with any general disturbance
models that follow (3).

Initial bias in parameter estimation can seriously deteriorate
control performance, especially in short-run processes. The
GHR controller assumes the initial bias is an unknown but
fixed value in this research. In many practices, due to frequent
process setup, initial bias may be better modelled as a random
variable rather than a fixed value. The GHR controller can be
extended to take random initial bias into considerations, which
should be a topic for further research. This work focuses on
single-input-single-output processes only. In many semicon-
ductor manufacturing scenarios, a process may have multiple
correlated inputs and outputs. Extending the GHR controller
to multivariate processes is another important topic for future
research
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APPENDIX A we find that
Since ) t—1
, 202 | (1= Bki) T (1= Bkj)
MSE(p:) = Var(p) + [E(p)] j=i+l
t o t—1
the problem (8) is equivalent to + Z H(l — Bk;) (r—i — Pr_i_1)
r=i+1j=r
min  Var(u:) t—1 t—1
j=i+1 J=i+1
From (7), we get that That is,
i—1 t—1 t t—1
B(u) = d (1 - Bk:) a7n Bk [ (1= pk;) = + > 11
iy j=it1 r=it2j=r
t—1
and (1= k)i —thr—ic1) 11 ] (1= Bk;) @D
t—1 [t— j=i+1
Var(p:) = o2 [H 1 - pkj) where 1 = 1,2,...,t — 1 and we used g = 1.
i=1 L j= From the side condition E(x;) = 0 and (17), (19), we know
t t— 2 that
+ > H(l — k) (thr—i — w,«_i_l)] . (18) 1
r=it+1j=r Zﬁk H (1-pkj)=1 (22)

Denote A as the Lagrange multiplier, we set

—Uziln 1—61{:]')‘}‘

t

>

Jj=t+1

So from (21) and (22), we get (23), found at the bottom of the
page. Since (21) is right for any 2 = 1,2,...,¢ — 1, let us set
1 = t — 1. Then we can get that

r=i+1
t—1 2 t—1 1 A
kioi==-|=— . 24
« [T = B (i — o—ir)| +AT[(1 - Bk) =173 (203 * wl) .
j=r =1
) From (23) and (24), we get
and equate 0/0k; f (k;) to zero. Since
t—1 t—1 t—1 L _ ll-]—(t— 1) "l/}l _d}t—l —Mt_g(kl,k‘g,...,k‘t_g)
[[a-pry=1->pk I -6k a9 "7 5 t—1=Mys(k1 ko, ... i)
i=1 i=1  j=itl (25)
t—1 t—1 t—1 t t—1
L= 30 IT (U=0Bkj) = >0 > TT(0 = Bk)(drei = hr—ic1)
\ = 20_2 i=1 j=1i+1 i=1r=i+2 j=r (23)
€ t—1
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where

t—3 t—1 t—2

k) =3 3 I~k

1=1 r=14+2 T

M;_o(ky, ko, . ..

X(I/}r i— VYr_iz1 +7/} Z

t—2
H (1 - Bk;). (26)

It is not difficult to get the recursive version of M;_» that

Mi_o(ky, ko, ... ki—2)

= (1= Bki—z) - My_3(k1,ka,... . ki—3) + 1r_2.

APPENDIX B

We only prove the case that 5 and b are positive. Note that
¥; = 1 —0 forall 5 > 1 when N, is IMA(1,1) process.
According to the GHR controller’s definition, it’s easy to get
EY;) = E(u) = dH;‘f;}(l — Bk;) from (7). So Y; is asymp-
totically stable if and only if there exists a 7' > 0 such that
|1 — Bk;| < 1forall j > T. We only need to prove if b > (3/2,
then

0<|1—pky1| <1

is satisfied whenever

0<|1-pBk)| <1 27

is satisfied.
Conditional on b > 3/2, from (13) and (27) we can get

16} 2b
M, —1-(-1H(1-9 2
v 1§ Lt RN (E] B
Because of (27), it’s easy to get
2
1——b<1 bk: < 1. (29)
16}
Then from (14) and (29), we know
My < M1+ (1-0). (30)

So under the conditions (28) and (30), we know

Mt<2b[iﬂ [%t—l—(t—l)(l—&)}—l—(l—&)
<%[%b(t+l)—l—t(l—6)] 31)

From (13), (31) and b > (3/2, we can get

0<k <2
t+1 <
g

that is, |1 — Bkiy1| < 1. Solim;— o E(Y;) =0

Since we have proved that |1 — k;| < 1 forall j > 1 under
the condition b > /2, we can find a real number ¢ such that
|l — Bk;| < g < 1. Then

Var(Y;) = Var(p,) + Var(e;)
t—1 [¢-1 2
=02 Z H(l - Bk;)| + a2
=1 | j=1

%

H(l — Bke—j)?| + 02

_j:1
< Jg g % + 03.
i=1

So limy_, o, Var(¥;) < oo.

(32)

APPENDIX C

When 9; = 0(j > 1) and b = 3, the GHR controller will
degenerate into the form that

1 1
and kt:—'—

gt

In order to prove the GHR controller be optimal, we need to
prove the following fact: if

Ty = Tp—1 — kt . 1/; (t Z 1) (33)

=11 (1<j<t—1)

are the solutions of the problem (8), then k1, ko, . ..,
are the solutions of the problem

kt—17 kt

MSE(ti¢41)

s.t. E(/l,t+1) =0 (34)

where

kt:

|~
o~ | =

From (18) and 19 = 1, we can derive that

t—1 [t—1

o2 Y I TJ - BE))

i=1 Lj=i
t—1

+ I =Bk = 1)

j=it1

t -1
+ Z H(l_ﬂkj)(iﬁr—i—iﬁr—i—l)

r=i+2 j=r

Var(ur) =

2

When ¢; = 0 (j > 1),

t

Var(p:) = o2 - —Bki -

1 t—1

II -8k

j=it1

(~
Il
-
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Put Bk; = 1/5 (1 < j < t—1) into the equation above, we get

1
Var(py) = 02 - ——. (35)
t—1
From (7), it’s easy to derive that
o1 = (1= Bke) (i + 1) + (1 — D)es
t—1
+ D (W41 — j)ee—j
7=1

When 1; = 0 (j > 1), we can derive from the above equation
that

= (1= Bke)* - Var(m) + o2 - B°k7
[Var(ue) + o2]
Var(u) 17
Bk, —
Bl Var(put) + o2
o2 - Var(pu)

Var(pu41)

= = 7 36
Var(yu) + 07 o
So in order to minimize Var(u:41), we need to let
V
Bk ar{ur) (37)

= Var(p) + 02

Then put (35) into (37), we get

]Ct:

=
o~ | =

thus we finish our proof.

APPENDIX D

_ Suppose Ny is ARIMA(1,1,1) process with parameter ¢ and
0, ie.,

1-6B
1-¢B
=(1+¢B+ ¢’B>+--)(1 - 6B)e;
=ei+(p—0) - e_1+ (p—0)

Ny = Ni—1 =

Et

t—2
D (38)
=1
Then
Var(N; — Ny_1) = 02 + (¢ — )% - o2
t—2
+Hp—6)" 02 Y 070 (39)
=1

If we have infinite sample size, i.e., t — oo, then

Var(N; — N;_1) = o2
¢2
1— 42

L+ (¢ =0+ (p—6)*- (40)

Now, NV, is misidentified as IMA(1,1) process with parameter 6.
Using moment estimation, we make

ol (1+0%) = o?
7\ G2 @
L= 0P+ (0= 10

(41)

That is,

G lo—10

(42)

ACKNOWLEDGMENT

The authors are grateful to the three referees and the Asso-
ciate Editor for many helpful suggestions that have significantly
improved the quality of this paper.

REFERENCES

[1] D. W. Apley and J. Kim, “Cautious control of industrial process vari-
ability with uncertain input and disturbance model parameters,” Tech-
nometrics, vol. 46, no. 2, pp. 188-199, May 2004.

[2] G.E.P.Box, G. M. Jenkins, and G. C. Reinsel, Time Series Analysis:
Forecasting and Control, 3rd ed. Upper Saddle River, NJ: Prentice
Hall, 1994.

[3] G. E. P. Box and A. Lucefio, Statistical Control by Monitoring and
Feedback Adjustment. New York: Wiley, 1997.

[4] G.E.P.Box and T. Kramer, “Statistical process monitoring and feed-
back adjustment-a discussion,” Technometrics, vol. 34, pp. 251-267,
1992.

[5] A. Chen and R. Guo, “Age-based double EWMA controller and its
application to CMP processes,” IEEE Trans. Semicond. Manuf., vol.
14, no. 1, pp. 11-19, Feb. 2001.

[6] J. H. Chen, T. W. Kuo, and A. C. Lee, “Run-by-run process control of
metal sputter deposition: Combining time series and extended kalman
filter,” IEEE Trans. Semicond. Manuf., vol. 20, no. 3, pp. 278-285, Aug.
2007.

[7] E. Del Castillo and A. M. Hurwitz, “Run-to-Run process control: Lit-

erature review and extensions,” J. Quality Technol., vol. 29, no. 2, pp.

184-196, 1997.

E. Del Castillo, R. Pan, and B. M. Colosimo, “A unifying view of some

process adjustment methods,” J. Quality Technol., vol. 35, no. 3, Jul.

2003.

F. E. Grubbs, “An optimum procedure for setting machines or adjusting

processes,” Indust. Quality Control, July, 1957. Reprinted in J. Quality

Technol., vol. 15, pp. 186-189, 1983.

[10] J.S. Hunter, “The exponentially weighted moving average,” J. Quality
Technol., vol. 18, pp. 203-210, 1986.

[11] A. Ingolfsson and E. Sachs, “Stability and sensitivity of an EWMA
controller,” J. Quality Technol., vol. 25, no. 4, pp. 271-287, Oct. 1993.

[12] M. Janakiram and J. B. Keats, “Combining SPC and EPC in a hybrid
industry,” J. Quality Technol., vol. 30, pp. 189-200, 1998.

[13] A. Luceiio, “Performance of discrete feedback adjustment schemes
with dead band, under stationary versus nonstationary stochastic dis-
turbances,” Technometrics, vol. 40, pp. 223-233, 1998.

[14] D. C. Montgomery, J. B. Keats, G. C. Runger, and W. S. Messina, “In-
tegrating statistical process control and engineering process control,”
J. Quality Technol., vol. 26, no. 2, pp. 79-87, 1994.

[15] R. Pan, “Statistical Process Adjustment Methods for Quality Control
in Short-Run Manufacturing,” Ph.D. dissertation, Pennsylvania State
Univ., , 2002.

[8

=

[9

—

Authorized licensed use limited to: Tsinghua University Library. Downloaded on September 23, 2009 at 20:52 from IEEE Xplore. Restrictions apply.



244 IEEE TRANSACTIONS ON SEMICONDUCTOR MANUFACTURING, VOL. 22, NO. 2, MAY 2009

[16] N.S.Patel and S. T. Jenkins, “Adaptive optimization of run-to-run con-
trollers: The EWMA example,” IEEE Trans. Semicond. Manuf., vol.
13, no. 1, pp. 97-107, Feb. 2000.

[17] STS Innovations STS, STS in Nanotechnology, 2006.

[18] P. Sullo and M. Vandeven, “Optimal adjustment strategies for a process
with run-to-run variation and 01 quality loss,” IIE Trans., vol. 31, no.
12, pp. 1135-1145, 1999.

[19] D. Trietsch, “The harmonic rule for process setup adjustment with
quadratic loss,” J. Quality Technol., vol. 30, no. 1, pp. 75-84, 1998.

[20] S.-T.Tseng, A.-B. Yeh, F. Tsung, and Y.-Y. Chan, “A study of variable
EWMA controller,” IEEE Trans. Semicond. Manuf., vol. 16, no. 4, pp.
633-643, Nov. 2003.

[21] P. Tsiamyrtzis and D. M. Hawkins, “A bayesian scheme to detect
changes in the mean of a short-run process,” Technometrics, vol. 47,
no. 4, pp. 446456, 2005.

[22] F.Tsungand D. W. Apley, “The dynamic 7'? chart for monitoring feed-
back-controlled processes,” IIE Trans., vol. 34, pp. 1043-1053, 2002.

[23] F. Tsung, H. Wu, and V. N. Nair, “On the efficiency and robustness
of discrete proportional-integral control schemes,” Technometrics, vol.
40, no. 3, pp. 214-222, Aug. 1998.

[24] E. Sachs, A. Hu, and A. Ingolfsson, “Run by run process control: Com-
bining SPC and feedback control,” IEEE Trans. Semicond. Manuf., vol.
8, no. 1, pp. 26-43, Feb. 1995.

[25] S. A. Vander Wiel, “Monitoring processes that wander using integrated
moving average models,” Technometrics, vol. 38, pp. 139-151, 1996.

[26] S. A. Vander Wiel, W. T. Tucker, F. W. Faltin, and N. Doganaksoy,
“Algorithmic statistical process control: Concepts and an application,”
Technometrics, vol. 34, pp. 286-297, 1992.

[27] K. Wang and F. Tsung, “Run-to-Run process adjustment using cate-
gorical observations,” J. Quality Technol., vol. 39, no. 4, pp. 312-325,
2007.

[28] M. F. Wu, C. H. Lin, D. S. H. Wong, S. S. Jang, and S. T. Tseng, “Per-
formance analysis of EWMA controllers subject to metrology delay,”
IEEE Trans. Semicond. Manuf., vol. 21, no. 3, pp. 413-425, Aug. 2008.

Fangyi He received the B.S. and M.S. degrees in sta-
tistics from University of Science and Technology
of China (USTC), and the Ph.D. degree in industrial
engineering from the School of Systems and Enter-
prises, Stevens Institute of Technology, Hoboken, NJ.
After his graduation, he joined the group of Equity
and Derivative of BNP Paribas, New York, working
as a quantitative researcher. His research interests in-
clude statistical process control, engineering process
control, time series analysis, applied probability and
statistical inference.
Dr. He is a member of American Statistical Association (ASA).

Kaibo Wang received the B. Eng. and M. Eng.
degrees in mechatronics from Xi’an Jiaotong
University, Xi’an, China, and the Ph.D. degree in
industrial engineering and engineering management
from Hong Kong University of Science and Tech-
nology (HKUST), Hong Kong.

He is currently an Assistant Professor in the
Department of Industrial Engineering at Tsinghua
University. He is on the Editorial Board for Journal
of the Chinese Institute of Industrial Engineers
(JCHE). He has published papers on Journal of
Quality Technology, Quality and Reliability Engineering International, Inter-
national Journal of Production Research and others. His research interests
include quality management, statistical process control, and run-to-run process
control.

Wei Jiang received the B.Sc. and M.Sc. degrees
from Xi’an Jiaotong University, Xi’an, China, in
1989 and 1992, respectively, and the Ph.D degree
from Hong Kong University of Science and Tech-
nology (HKUST), Hong Kong, in 2000.

He has been working in AT&T labs for four years
as a senior technical staff member and appointed as
Assistant Professor in 2003 and Associated Profes-
sors in 2008 at Stevens Institute of Technology. He
is now a Visiting Associate Professor in the Hong
Kong University of Science and Technology. His re-
search focuses on fault detection and activity monitoring using statistical and
data mining methods. His current research interests include data mining and en-
terprise intelligence, statistical and data mining methods for quality control and
management, as well as logistics management and financial applications.

Dr. Wei Jiang has been awarded a NSF project on business activity monitoring
and is a recipient of NSF CAREER award on information quality management.
He has published many research papers on quality journals including I/E Trans-
actions, Technometrics, Journal of Quality Technology, etc., and is now serving
as an associate editor of Journal of Statistical Computation and Simulation. He
is the past chair of the Data Mining Section of the Institute for Operations Re-
search and Management Sciences.

Authorized licensed use limited to: Tsinghua University Library. Downloaded on September 23, 2009 at 20:52 from IEEE Xplore. Restrictions apply.



